23 research outputs found

    Compliant Electric Actuators Based on Handed Shearing Auxetics

    Get PDF
    In this paper, we explore a new class of electric motor-driven compliant actuators based on handed shearing auxetic cylinders. This technique combines the benefits of compliant bodies from soft robotic actuators with the simplicity of direct coupling to electric motors. We demonstrate the effectiveness of this technique by creating linear actuators, a four degree-of-freedom robotic platform, and a soft robotic gripper. We compare the soft robotic gripper against a state of the art pneumatic soft gripper, finding similar grasping performance in a significantly smaller and more energy-efficient package.Boeing CompanyNational Science Foundation (U.S.) (grant numbers NSF IIS- 1226883)National Science Foundation (U.S.) (grant numbers NSF CCF-1138967

    Conformal Robotic Stereolithography

    Get PDF
    Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems.American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Institute of Mental Health (U.S.) (University of Michigan Microfluidics in Biomedical Sciences Training Program. 5T32-EB005582)Singapore-MIT Alliance for Research and Technology (SMART

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Multiplexed Manipulation: Versatile Multimodal Grasping via a Hybrid Soft Gripper

    No full text
    © 2020 IEEE. The success of hybrid suction + parallel-jaw grippers in the Amazon Robotics/Picking Challenge have demonstrated the effectiveness of multimodal grasping approaches. However, existing multimodal grippers combine grasping modes in isolation and do not incorporate the benefits of compliance found in soft robotic manipulators. In this paper, we present a gripper that integrates three modes of grasping: suction, parallel jaw, and soft fingers. Using complaint handed shearing auxetics actuators as the foundation, this gripper is able to multiplex manipulation by creating unique grasping primitives through permutations of these grasping techniques. This gripper is able to grasp 88% of tested objects, 14% of which could only be grasped using a combination of grasping modes. The gripper is also able to perform in-hand object re-orientation of flat objects without the need for pre-grasp manipulation.National Science Foundation (Grants 1830901, 1122374

    Automated Recycling Separation Enabled by Soft Robotic Material Classification

    No full text
    Single-stream recycling is currently an extremely labor intensive process due to the need for manual object sorting. Soft robotics offers a natural solution as compliant robots require less computation to plan paths and grasp objects in a cluttered environment. However, most soft robots are not robust enough to handle the many sharp objects present in a recycling facility. In this work, we present a soft sensorized robotic gripper which is fully electrically driven and can detect the difference between paper, metal and plastic. By combining handed shearing auxetics with high deformation capacitive pressure and strain sensors, we present a new puncture resistant soft robotic gripper. Our materials classifier has 85% accuracy with a stationary gripper and 63% accuracy in a simulated recycling pipeline. This classifier works over a variety of objects, including those that would fool a purely vision-based system.National Science Foundation (Grant 1830901

    A Simple Electric Soft Robotic Gripper with High-Deformation Haptic Feedback

    No full text
    Compliant robotic grippers are more robust to uncertainties in grasping and manipulation tasks, especially when paired with tactile and proprioceptive feedback. Although considerable progress has been made towards achieving proprioceptive soft robotic grippers, current efforts require complex driving hardware or fabrication techniques. In this paper, we present a simple scalable soft robotic gripper integrated with high-deformation strain and pressure sensors. The gripper is composed of structurally-compliant handed shearing auxetic structures actuated by electric motors. Coupling deformable sensors with the compliant grippers enables gripper proprioception and object classification. With this sensorized system, we are able to identify objects’ size to within 33% of actual radius and sort objects as hard / soft with 78% accuracy.National Science Foundation (U.S.) (Grant 1122374

    Obstetrical Forceps With Passive Rotation and Sensor Feedback

    No full text
    An improved tool for operative vaginal delivery can reduce maternal and fetal trauma during the delivery and recovery processes. When a delivery cannot be completed naturally due to maternal exhaustion or fetal distress, physicians must perform an operative vaginal delivery (OVD), with forceps or a vacuum, or a Cesarean section (C-section). Although C-sections are more prevalent in the United States than OVDs, they require longer maternal hospital stays and recovery time and increase risk of maternal infection and fetal breathing problems. In 2015, the American College of Obstetrics and Gynecology pushed to increase the number of OVDs to limit C-section associated delivery risks. However, the current tools for OVD either have steep learning curves, are unable to be used for all fetal head presentations, or have associated maternal and fetal risks. There is a need for an easy to use, safe, and reliable tool for operative vaginal delivery. Topics: Feedback, Rotation, Sensors, Vacuum, Gynecology, Obstetrics, Ris
    corecore